The generator matrix
1 0 0 1 1 1 X 1 1 X 1 X 1 0 1 1 X 1 X 1 1 0 0 1 1 X 1 0 1 X 1 1 0 1 1 0 1 X 1 X 1 0 1 1 X 1 1 X X 1 1 1 1 0 0 0 X X X X 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 0 1 1 1
0 1 0 0 1 X+1 1 X X+1 1 0 0 1 1 X X+1 1 1 X X 1 1 X X+1 0 1 X 1 0 1 1 0 1 X+1 X 1 X+1 0 X 1 1 0 X 0 X 1 X+1 1 1 X 0 X+1 1 1 1 X 0 0 X X X X 0 0 0 0 X X X X 0 0 1 X+1 X+1 X+1 1 1 X+1 1 1 1 0 0 X 0
0 0 1 1 X+1 0 X+1 1 X+1 X X 1 X 1 1 X 1 1 1 0 0 0 1 1 1 X X X+1 0 1 X+1 X X+1 X+1 X+1 X X 1 X+1 0 0 1 X X+1 1 1 0 0 X+1 0 X+1 1 X X 1 1 0 X X 0 0 X X 0 0 X X 0 1 X+1 X+1 1 1 0 X+1 X X X+1 1 0 0 1 1 0 1 X
0 0 0 X X X 0 0 0 X X X 0 X X X 0 X 0 0 0 X X 0 0 0 X X X X 0 0 0 X X X 0 0 0 0 X X 0 0 X 0 0 X X X X X X 0 0 0 X X X X X X X X 0 0 0 0 0 0 0 0 0 X 0 X X 0 0 X 0 0 0 X X X
generates a code of length 86 over Z2[X]/(X^2) who´s minimum homogenous weight is 84.
Homogenous weight enumerator: w(x)=1x^0+17x^84+36x^85+24x^86+24x^87+11x^88+4x^89+6x^90+1x^96+1x^100+2x^102+1x^104
The gray image is a linear code over GF(2) with n=172, k=7 and d=84.
This code was found by Heurico 1.16 in 0.12 seconds.